FredéricAMIEL AMESYS
Benoit FEIX INSIDE CONTACTLESS

On the BRIP Algorithms Security on RSA

Outline

Introduction
Previous works
Our Attacks

Collision Attacks on RSA BRIP Implementation

Remember Collision Attacks
Improved Collision Attacks Analysis on BRIP

BRIP and Improvements for Exponentiations (RSA)
Use Montgomery Arithmetic to improve efficiency
A combined Power Analysis Attack

Conclusion

OnThe BRIP Algorithms Security on RSA - WISTP'08

Introduction

Power Analysis (PA) is a concrete threat against
embedded cryptosystems.

Any naive implementation succumbs to such
attacks:

Public key primitives :

Modular exponentiation : RSA, DH, etc.
Scalar Product in Elliptic Curves Schemes: ECDSA, El Gamal, etc.

Secret key algorithms :
DES, AES, HMAC, etc...

OnThe BRIP Algorithms Security on RSA - WISTP'08

Introduction Some previous attacks

P. C. Kocher..Timing attacks on implementations of Diffie-Hellman, RSA, DSS,
and other systems. CRYPTO 1996.

P. C. Kocher, J. Jaffe, and B. Jun. Differential power analysis. CRYPTO ‘gg,

E. Brier, C. Clavier, and F. Olivier. Correlation power analysis with a leakage model.
CHES 2004.

P-A. Fouque and F. Valette.The Doubling Attack - why upwards is better than
downwards. CHES 2003.

S-M.Yen, W-C. Lien, S. Moon, and J. Ha. Power Analysis by Exploiting Chosen
Message and Internal Collisions - Vulnerability of Checking Mechanism for RSA-
Decryption. Mycrypt 2005.

F. Amiel, B. Feix, and K. Villegas. Power Analysis for Secret Recovering and Reverse
Engineering of Public Key Algorithms. SAC 2007.

OnThe BRIP Algorithms Security on RSA - WISTP'08

Introduction Our Work

Improvement of the BRIP Power Collision Analysis
Collision analysis on blinded messages.

Proposal for an efficient implementation of BRIP
Use Montgomery arithmetic to improve efficiency,

Sensitive to a combined Power Analysis :
SPA + D(C)PA can defeat this implementation.

OnThe BRIP Algorithms Security on RSA - WISTP'08

Introduction Reminder on RSA

RSA based on modular exponentiation :
s=m9modn

s : Signature m : Message
n : Modulus () d : Exponent (Private)

Typically : |n| = |s| = |m| = |d| = k bits.
n usually equals to 768, 1024, 1536 or 2048

OnThe BRIP Algorithms Security on RSA - WISTP'08

A Naive Implementation

Classical « Square and Multiply » algorithm :

Algorithm 3.1 Exponentiation from left to right
INPUT: Integers m and n such that m < mn, k-bit exponent d =

(d;ﬁ_-ld;ﬁ_g .. s (31(5{})2 d
OurpuT: ModExp(m,d,n)= m® mod n

Step 1. a=1

Step 2. for ¢ from £ —1to 0 do
a=axa modn
Ifd; =1 Then a=a x m modn

Step 3. Return(a)

OnThe BRIP Algorithms Security on RSA - WISTP'08

Power Analysis on Naive RSA

Timing Attacks (TA) :
Conditional branching :
Not constant time : [f=c -z moda] Vs

Simple Power Analysis (SPA) :
Squaring power pattern is different from multiplication

Chosen message attack :

Statistical Attacks (CPA, DPA) :

Making hypothesis on [4]gives ability to predict output
value of [a=a>a modn] or E=a>Tm modn].

Not exhaustive (Collision/Template Attacks/etc.)!

OnThe BRIP Algorithms Security on RSA - WISTP'08

BRIP as countermeasure

Introduced on RSA by Yen/Lien/Moon/Ha in ‘o4,

SPA/D(C)PA/TA resistant :

Algorithm 3.2 BRIP Exponentiation from left to right
INPUT: integers m and n such that m < mn., k-bit exponent d =

dir_1di_9 . . .d;L{'ECuJQ
JuTPuT: BRIP_Exp(m,dn)= m? mod n

Step 1. If m =1 Return(1)
Step 2. f m=n—-1 Return(['—I‘J"’ECI mod 72)

Step 3] Choose a random value v and compute v~ mod n : Data

Randomization

Step 4Ja=v. mo=v""' modn, mi =v~'.m mod n
Step 5. for ¢« from £ — 1 to 0 do

a=a = a Imod n .
m=m==) Constant time

a=a x md; mod n

Step 6. a =a x mq
Step 7. Return(a)

OnThe BRIP Algorithms Security on RSA - WISTP'08

BRIP Drawbacks

Step 5. for i from £ —1to 0 do
Comp|EXIty s 2 a=axa modn

a=ax mg, modn

Improvement : Implement BRIP exponentiation using
k-ary method.

Need computation of an inverse modulo

Step 3. Choose a random value v and compute| v

Improvement : Use Montgomery modular arithmetic
to ease computation (Ciet/Feix'ox) .

OnThe BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (1/3)

Based on assumption:
“"Each computation in an embedded Public Key Implementation has a
power signature characteristic from data manipulated.”

Ability to detect identical computations through power
execution traces.

OnThe BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (2/3)

First Publications on ECC and RSA by Fouque and
Valette.

Yen & al. : Ability to find out private exponent value
through collision detection by using particular
chosen message value +1modn,

OnThe BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (3/3)

Taken in consideration in BRIP :

Algorithm 3.2 BRIP Exponentiation from left to right
INPUT: integers m and n such that m < mn., k-bit exponent d =

dr—1dp—o .. ,G!T.;Ld-:.)g
JuTPUT: BRIP_ExXp(m,dn)= m? mod n

Step 1. If m =1 Return(1)

Step 2. lf m=n—-1 Return((—1)% mod n)

= - —1
Step 3. Choose a random value v and compute v mod n

Step 4. a=v, mp = v™! mod n. mi =v L.m mod n
Step 5. for i from £ — 1 to 0 do
a=axa modn
a=axmg, modn
Step 6. a=a X mp
Step 7. Return(a)

OnThe BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (1/8)

We analyze how collision attacks can
endanger BRIP implementation beyond
message blinding.

Let’s consider that v, an h-bit random value is
used for BRIP blinding scheme :

Step 3. Choose a random value v and compute v~ mod n

OnThe BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (2/8)

Condition of the attack:
Find two colliding traces with {m, v.}and {-m, v,}and v, = v,
i.e. sharing same random value.

Message Square Message Multiplication (d; = 1) Square
17 2 r SEE 2
m {m..d .1.*1} {(-m..g‘d)aﬂ X [m.v; 1} {(mg'LJI +1).1r1}
d=1 2 2
1 - PRI/
! —m {(—m)d .1?4 |—m.v; 1} ((—m)% 4"+
Collision if v1 = w9 - ||
Message Square i = (Square
p)
rr
d.=0 m {md .1?1}
™ v o2
—m {(—m}d .1?4
Collision if v1 = v9 -

In case of such event, collisions appearford;=0.

OnThe BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (3/8)

Attack process :

Algorithm 4.5 BRIP Collision Attack

INpPUT: s = RSA-BRIP(m, d), s = RSA-BRIP(—m, d)
OUTPUT: Secret exponent d

Step 1. Choose a random value m in [2,n — 2.
Step 2. Collect k traces (Co, ..., Cr—1) of BRIP execution with m as input message.
Step 3. Collect k traces (C).....CL_4) of BRIP execution with —m as input message.

Step 4. Find traces C; and C such as both traces are colliding on each BRIP Fake Multiply.

Step 5. Compute S = |C; — CJ|.

Step 6. Each non zero difference on S identify a true multiplication, 1.e. d; = 1

Step 4 is realistic as on average |d| operations collide !
RSA-2048 gives 2048 collision occurrences, this make attack
concrete in term of signal processing even with the
presence of hardware countermeasures.

OnThe BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (4/8)

Probability of detecting at least two colliding couples in two sets of k
curves can be expressed as :

—((k2)/ |
Peollision == 1 —e 3 |?|)

Evaluating formula with a typical random length :

) k collision
).507
21217 ~ 131072| 0.864
32| 161000 0.951
2
2

200000 0.990

® ~~ 262144| 0.999

Dramatically low number of curves for 32-bit random!

OnThe BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (5/8)

For different random bit size :

As a security factor, we recommend use of 96-bit random

values.

h k

collision probability

16| 27 = 512

0.864
0.999
0.505
0.864
0.999
0.497
0.864
0.999

OnThe BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (6/8)

With k-ary exponentiation method, k=2 here :

Square & Multiply | k-ary |

Algorithm 3.3 2-ary Exponentiation from left to right
k-bit exponent d = INPUT: integers m,n such that m < n. k-bit exponent d = (di_1dj._o ... d1dp)s
OuTPUT: m" mod n

Algorithm 3.1 Exponentiation from left to right
INPUT: integers m and n such that m < n,

((lk,'ldkfg . .(11(10)2 d
OutpuT: ModExp(m,d,n)= m® mod n

S | . Stepl.a=1
Step 1. a = | . ‘
, Step 2. Compute m; = m’ mod n, =0,.... 3
Step 2. for ¢ from £ — 1 to 0 do , I © ‘l_ © i _“ v J
Step 3. for i from k—1to0 by 2 do

a=axa modn
If di =1 Then a =a x m modn a=axa modn
a=axa modmn

a = aXme.d4d;,_;) modn

How behave collision attack with such implementation ?

OnThe BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (7/8)

Collisions happens too :

‘N"IessageH Square ‘ Square ‘ M24,+d,_,=0) MontMul H
di:OO m ;"\f.-"\f(m.d” ot m.dﬂ.ir*“) _-’\f_-";f(m.g'd” ot m2d 1) _-";f_-"'\f(mfl‘d” vt A
—m -M-'n‘f((—?n)d”.'J’vg, (—-m..)d”.rt’g) .-""tf_-'\f('m..g'd” b2 m2d” rv2) .-"lf_-"'\f(?n..”l‘d”.?*l”? L T3v2)
If v1 = w2 - Yes
‘N"IessageH Square ‘ Square ‘ M4, +d, =1y MontMul H
di:01 m ;"\f_-“qf(-m.d” it -md'”.r“) .-"\f.-“;f(-mg'd” it m>) f\f.-“;f(-m“l'd” A e 31
—m _-"'lf_-"\f((—-m.)d”.-:’t’g, (—-m)d”.?*"’g) .-’\J’A-T\I(-mg'd” v2 m2d” rv2) _-"'J_»"\f(-?n.d"d”.rj‘”?. —-?:*;.).-:”3”9)
If vi = vo - Yes
‘I\«'IessageH Square ‘ Square ‘ M2q,+d,_,=2) MontMul H
di=10 m ;"\f.-"\f(md U md !.r“) _-"\f_-"lf(mg'df it m2d 7 _-“lf‘-"\f(md“d vt -m.Q.?’_gvi)
—m -M-'n‘f((—m)d” T2, (—m)d” rv?) .-""tf_-“;ir('m..g'd” U2 m2d” rv2) .-'"tf.-"\f('nr..4‘d” A2 2 p3v2)
If v1 = vo - Yes
‘N"IessageH Square ‘ Square ‘ M24,+d,_,=3) MontMul H
di:]'l m ;"\f.-"\f(-md” oty m?’) .-“;f.-‘\f(-m..g'd” it m29d puL) .-“;f.-"\f(-??z..4‘d” A 3 T3y
—m -'n‘ir-'n‘f((*m)d”.r”g, (*-m-)d”.?"”g) _-"11’_-";1{('??1..2'(’1”.?*"2.-m.Q'd” rv2) .-'Uﬂf(-??2-4'd”.-J’J""Q. —m)3.r3v2)
If vi = w2 - Yes

Through collision analysis {00,10} can be identified from {o1,11}, half of
d can be therefore recovered.

OnThe BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (8/8)

With RSA CRT (Chinese Remainder Theorem), n=p.q :

Given two input messages +m mod n
Relation is maintained as:

= - —> =a=
‘mzz-mlmodn \ —> ‘mzmodq=-m1modq\

Colliding power trace both exponentiations would leak secret exponents if
message is randomized once at the beginning.

Collision Analysis applies identically !

OnThe BRIP Algorithms Security on RSA - WISTP'08

Implementing BRIP RSA (1/6)

BRIP RSA needs an inverse modulo computation:
Costly operation in term of execution time,
Major drawback of the countermeasure must be avoided.

Trick from Ciet & Feix ‘04, use Montgomery Modular Arithmetic :

MontMult(a, b,n)=a.b.R*modn
MontMult(z, 1, n) =R*mod n

to compute v =R°and v* = R with s a random value.

Pertinent : Montgomery Modular Arithmetic is well spread in Public Key
hardware accelerators.

OnThe BRIP Algorithms Security on RSA - WISTP'08

Implementing BRIP RSA (2/6)

Consider exponentiation using Montgomery arithmetic:

MontExp(x,e,n) =x¢. Rmod n

ldea is to set: e = s (BRIP RSA random value)
X = R*, obtained from MontMult(z,1,n)

and then compute: MontExp(R%, s,n)=R*.R

Inverse modulo n is efficiently replaced by an
exponentiation with small exponent !

OnThe BRIP Algorithms Security on RSA - WISTP'08

Implementing BRIP RSA (3/6)

Seducing computation method BUT introduces an SPA leakage!

- —1
Step 3. Choose a random value| v Jand compute |v mod n

: SPA'!
RS computation

MontExp(R, s, N)

RS computation
MontExp(R™?, s, N)

m

OnThe BRIP Algorithms Security on RSA - WISTP'08

Implementing BRIP RSA (4/6)

What happen ? In exponentiation loop and each time s;= 1, following
computation is executed :

MontMult(Acc, R* . R, n) = MontMult(Acc, 1, n)

Due to Hamming weight of 2" operand (‘1’), Multiply becomes characteristic. Each
Multiply operations can be identified by its low consumption.
Random value is therefore revealed !

OnThe BRIP Algorithms Security on RSA - WISTP'08

Implementing BRIP RSA (5/6)

Once the random value is recovered trough SPA, internal
values in BRIP RSA can be guessed.

Therefore any power analysis attacks based on statistical
analysis (DPA, CPA) can be envisaged.

Experimentally less than one thousand of curves are
needed to recover whole exponent value (by using CPA).

OnThe BRIP Algorithms Security on RSA - WISTP'08

Implementing BRIP RSA (6/6)

Simple tweak to counteract SPA is to compute :

=-(-(R*))*mod n
=n—ModExp(n-R*s,n) ifseven

= ModExp(n-R,s,n) if s odd

This concretely replace 1 replaced by n-1 as operand of MontMult(x, y, n)
operator.

n-1 has no more a low hamming weight: SPA avoided.
Sufficient ?

Most advanced attacks should be considered too (Template Attacks,
etc.) which could be used to recover part of the random value.

Adding countermeasures in R° and R computations will reduce at same
time performances and therefore interest for BRIP RSA.

OnThe BRIP Algorithms Security on RSA - WISTP'08

Conclusion

Analysis presented :

How collision detection can endanger BRIP RSA:
Avoid random values < 64 bits,
Using padding schemes prevent against such attack,
Analysis can be extended to others exponentiation methods.

Montgomery inversion trick :
Must be implemented carefully.

OnThe BRIP Algorithms Security on RSA - WISTP'08

Questions & Answers

OnThe BRIP Algorithms Security on RSA - WISTP'08

