Frédéric AMIELAMESYSBenoit FEIXINSIDE CONTACTLESS

On the BRIP Algorithms Security on RSA

WISTP' 08

Outline

Introduction

Previous works Our Attacks

Collision Attacks on RSA BRIP Implementation Remember Collision Attacks Improved Collision Attacks Analysis on BRIP

BRIP and Improvements for Exponentiations (RSA)
 Use Montgomery Arithmetic to improve efficiency
 A combined Power Analysis Attack

Conclusion

- Power Analysis (PA) is a concrete threat against embedded cryptosystems.
- Any naive implementation succumbs to such attacks:

Public key primitives :

Modular exponentiation : RSA, DH, etc. Scalar Product in Elliptic Curves Schemes: ECDSA, El Gamal, etc.

Secret key algorithms :

DES, AES, HMAC, etc...

Some previous attacks

- P. C. Kocher..Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. CRYPTO 1996.
- P. C. Kocher, J. Jaffe, and B. Jun. *Differential power analysis*. CRYPTO '99,
- E. Brier, C. Clavier, and F. Olivier. *Correlation power analysis with a leakage model*. CHES 2004.
- P-A. Fouque and F. Valette. The Doubling Attack why upwards is better than downwards. CHES 2003.
- S-M. Yen, W-C. Lien, S. Moon, and J. Ha. Power Analysis by Exploiting Chosen Message and Internal Collisions - Vulnerability of Checking Mechanism for RSA-Decryption. Mycrypt 2005.
- F. Amiel, B. Feix, and K. Villegas. *Power Analysis for Secret Recovering and Reverse Engineering of Public Key Algorithms*. SAC 2007.

Our Work

- Improvement of the BRIP Power Collision Analysis
 Collision analysis on blinded messages.
- Proposal for an efficient implementation of BRIP
 Use Montgomery arithmetic to improve efficiency,
 Sensitive to a combined Power Analysis :
 SPA + D(C)PA can defeat this implementation.

Reminder on RSA

RSA based on modular exponentiation :

$s = m^d \mod n$

s : Signature *n* : Modulus (Public) *m* : Message

d : Exponent (**Private**)

Typically : |n| = |s| = |m| = |d| = k bits. *n* usually equals to 768, 1024, 1536 or 2048

On The BRIP Algorithms Security on RSA - WISTP'08

Classical « Square and Multiply » algorithm :

Algorithm 3.1 Exponentiation from left to right INPUT: integers m and n such that m < n, k-bit exponent $d = (d_{k-1}d_{k-2}\ldots d_1d_0)_2$ OUTPUT: $\mathsf{ModExp}(m,d,n) = m^d \mod n$ Step 1. a = 1Step 2. for i from k - 1 to 0 do $a = a \times a \mod n$ If $d_i = 1$ Then $a = a \times m \mod n$

Step 3. $\operatorname{Return}(a)$

Power Analysis on Naive RSA

Statistical Attacks (CPA, DPA) :

Making hypothesis on d_i gives ability to predict output value of $a = a \times a \mod n$ or $a = a \times m \mod n$.

Not exhaustive (Collision/Template Attacks/etc.) !

On The BRIP Algorithms Security on RSA - WISTP'08

BRIP as countermeasure

- Introduced on RSA by Yen/Lien/Moon/Ha in '04,
- SPA/D(C)PA/TA resistant :

Algorithm 3.2 BRIP Exponentiation from left to right INPUT: integers m and n such that m < n, k-bit exponent $d = (d_{k-1}d_{k-2}\ldots d_1d_0)_2$ OUTPUT: BRIP_Exp $(m,d,n) = m^d \mod n$

Step 1. If m = 1 Return(1) Step 2. If m = n - 1 Return($(-1)^{d_0} \mod n$) Step 3. Choose a random value v and compute $v^{-1} \mod n$ Step 4. $a = v, m_0 = v^{-1} \mod n, m_1 = v^{-1}.m \mod n$ Step 5. for i from k - 1 to 0 do $a = a \times a \mod n$ $a = a \times m_{d_i} \mod n$ Step 6. $a = a \times m_0$ Step 7. Return(a)

BRIP Drawbacks

• Complexity: 2 Step 5. for i from k - 1 to 0 do $a = a \times a \mod n$ $a = a \times m_{d_i} \mod n$

Improvement : Implement BRIP exponentiation using k-ary method.

Need computation of an inverse modulo

Step 3. Choose a random value v and compute $v^{-1} \mod n$

Improvement : Use Montgomery modular arithmetic to ease computation (Ciet/Feix'05).

Collision Attack on BRIP (1/3)

Based on **assumption**:

"Each computation in an embedded Public Key Implementation has a **power signature characteristic from data manipulated**."

 Ability to detect identical computations through power execution traces.

Collision Attack on BRIP (2/3)

- First Publications on ECC and RSA by Fouque and Valette.
- Yen & al. : Ability to find out private exponent value through collision detection by using particular chosen message value ±1 mod n,

Collision Attack on BRIP (3/3)

Taken in consideration in BRIP :

Algorithm 3.2 BRIP Exponentiation from left to right INPUT: integers m and n such that m < n, k-bit exponent $d = (d_{k-1}d_{k-2}\ldots d_1d_0)_2$ OUTPUT: BRIP_Exp $(m,d,n) = m^d \mod n$

Step 1. If m = 1 Return(1) Step 2. If m = n - 1 Return($(-1)^{d_0} \mod n$) Step 3. Choose a random value v and compute $v^{-1} \mod n$ Step 4. $a = v, m_0 = v^{-1} \mod n, m_1 = v^{-1}.m \mod n$ Step 5. for i from k - 1 to 0 do $a = a \times a \mod n$ $a = a \times m_{d_i} \mod n$ Step 6. $a = a \times m_0$ Step 7. Return(a)

How message blinding protect against such attack?

On The BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (1/8)

- We analyze how collision attacks can endanger BRIP implementation beyond message blinding.
- Let's consider that v, an h-bit random value is used for BRIP blinding scheme :

Step 3. Choose a random value v and compute $v^{-1} \mod n$

Collision Attack on BRIP (2/8)

 Condition of the attack : Find two colliding traces with {m, v₁} and {-m, v₂} and v₁ = v₂ i.e. sharing same random value.

	Message	Square	Message Multiplication $(d_i = 1)$	Square
d 1	m	$\left[m^{d''}.v_1\right]^2$	$\left[(m^{2.d^{\prime\prime}}).v_1^2\right] \times \left[m.v_1^{-1}\right]$	$\left[(m^{2.d^{\prime\prime}+1}).v_1\right]^2$
a _i =1	-m	$\left[(-m)^{d^{\prime\prime}}.v_2\right]^2$	$\left[(m^{2.d^{\prime\prime}}).v_2^2)\right] \times \left[-m.v_2^{-1}\right]$	$\left[((-m)^{2.d''+1}).v_2 \right]^2$
	Collision if $v_1 = v_2$	-	No	No
	Message	Square	Fake Multiplication $(d_i = 0)$	Square
d _i =0	m	$\left[m^{d^{\prime\prime}}.v_{1}\right]^{2}$	$\left[(m^{2.d^{\prime\prime}}).v_1^2 \right] \times \left[v_1^{-1} \right]$	$\left[(m^{2.d^{\prime\prime}}).v_1\right]_2^2$
	-m	$\left\lfloor (-m)^{d^{\prime\prime}} . v_2 \right\rfloor^2$	$(m^{2.d^{\prime\prime}}).v_2^2) \times [v_2^{-1}]$	$(m^{2.d^{\prime\prime}}).v_2 \Big ^2$
	Collision if $v_1 = v_2$	-	Yes	Yes

In case of such event, **collisions appear for** $d_i = 0$.

Collision Attack on BRIP (3/8)

Attack process :

Algorithm 4.5 BRIP Collision Attack INPUT: s = RSA-BRIP(m, d), s' = RSA-BRIP(-m, d)OUTPUT: Secret exponent d

Step 1. Choose a random value m in [2, n-2]. Step 2. Collect k traces $(C_0, ..., C_{k-1})$ of BRIP execution with m as input message. Step 3. Collect k traces $(C'_0, ..., C'_{k-1})$ of BRIP execution with -m as input message. Step 4. Find traces C_i and C'_j such as both traces are colliding on each BRIP Fake Multiply. Step 5. Compute $S = |C_i - C'_j|$. Step 6. Each non zero difference on S identify a true multiplication, i.e. $d_i = 1$

 Step 4 is realistic as on average |d| operations collide ! RSA-2048 gives 2048 collision occurrences, this make attack concrete in term of signal processing even with the presence of hardware countermeasures.

Collision Attack on BRIP (4/8)

 Probability of detecting at least two colliding couples in two sets of k curves can be expressed as :

$$p_{collision} \simeq 1 - e^{-((k^2)/|h|)}$$

• **Evaluating formula** with a typical random length :

h	k	$\operatorname{collision}$
32	78000	0.507
32	$2^{17} \approx 131072$	0.864
32	161000	0.951
32	200000	0.990
32	$2^{18} \approx 262144$	0.999

Dramatically low number of curves for 32-bit random !

On The BRIP Algorithms Security on RSA - WISTP'08

Collision Attack on BRIP (5/8)

• For different random bit size :

h	k	collision probability
16	$2^9 = 512$	0.864
16	$2^{10} = 1024$	0.999
64	5.1×10^9	0.505
64	2^{33}	0.864
64	2^{34}	0.999
96	3.3×10^{14}	0.497
96	2^{48}	0.864
96	2^{49}	0.999

As a security factor, we recommend use of <u>96-bit random</u> values.

Collision Attack on BRIP (6/8)

With k-ary exponentiation method, k = 2 here :

Square & Multiply	k-ary
Algorithm 3.1 Exponentiation from left to right INPUT: integers m and n such that $m < n$, k -bit exponent $d = (d_{k-1}d_{k-2}\ldots d_1d_0)_2$ OUTPUT: ModExp $(m,d,n) = m^d \mod n$ Step 1. $a = 1$ Step 2. for i from $k-1$ to 0 do $a = a \times a \mod n$ If $d_i = 1$ Then $a = a \times m \mod n$ Step 3. Return (a)	Algorithm 3.3 2-ary Exponentiation from left to right INPUT: integers m, n such that $m < n, k$ -bit exponent $d = (d_{k-1}d_{k-2} \dots d_1d_0)_2$ OUTPUT: $m^d \mod n$ Step 1. $a = 1$ Step 2. Compute $m_j = m^j \mod n, j = 0, \dots, 3$ Step 3. for i from $k - 1$ to 0 by 2 do $a = a \times a \mod n$ $a = a \times m \mod n$ $a = a \times m \mod n$ $a = a \times m \mod n$ $a = a \times m(2.d_i+d_{i-1}) \mod n$

How behave collision attack with such implementation ?

Collision Attack on BRIP (7/8)

• Collisions happens too :

	Message	Square	Square	$M_{(2d_i+d_{i-1}=0)}$ MontMul
d;=00	m	$MM(m^{d''}.r^{v_1}, m^{d''}.r^{v_1})$	$MM(m^{2.d''}.r^{v_1},m^{2.d''}.r^{v_1})$	$MM(m^{4.d''}.r^{4v_1},r^{-3v_1})$
' -{	-m	$MM((-m)^{d''}.r^{v_2},(-m)^{d''}.r^{v_2})$	$MM(m^{2.d''}.r^{v_2},m^{2.d''}.r^{v_2})$	$MM(m^{4.d''}.r^{4v_2},r^{-3v_2})$
	If $v_1 = v_2$	-	Yes	Yes
	Message	Square	Square	$M_{(2d_i+d_{i-1}=1)}$ MontMul
$d_i = 01$	m	$MM(m^{d''}.r^{v_1}, m^{d''}.r^{v_1})$	$MM(m^{2.d''}.r^{v_1},m^{2.d''}.r^{v_1})$	$MM(m^{4.d''}.r^{4v_1}, m.r^{-3v_1})$
' -{	-m	$MM((-m)^{d''}.r^{v_2},(-m)^{d''}.r^{v_2})$	$MM(m^{2.d''}.r^{v_2},m^{2.d''}.r^{v_2})$	$MM(m^{4.d''}.r^{4v_2},(-m).r^{-3v_2})$
	If $v_1 = v_2$	-	Yes	No
_	Message	Square	Square	$M_{(2d_i+d_{i-1}=2)}$ MontMul
d _i =10	m	$MM(m^{d''}.r^{v_1}, m^{d''}.r^{v_1})$	$MM(m^{2.d''}.r^{v_1},m^{2.d''}.r^{v_1})$	$MM(m^{4.d''}.r^{4v_1},m^2.r^{-3v_1})$
_	-m	$MM((-m)^{d''}.r^{v_2},(-m)^{d''}.r^{v_2})$	$MM(m^{2.d''}.r^{v_2},m^{2.d''}.r^{v_2})$	$MM(m^{4.d''}.r^{4v_2},m^2.r^{-3v_2})$
L	If $v_1 = v_2$	-	Yes	Yes
Ĺ	If $v_1 = v_2$ Message	- Square	Yes Square	Yes $M_{(2d_i+d_{i-1}=3)}$ MontMul
d;=11	$\frac{\text{If } v_1 = v_2}{\text{Message}}$	$-$ Square $MM(m^{d''}.r^{v_1},m^{d''}.r^{v_1})$	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	Yes $M_{(2d_i+d_{i-1}=3)}$ MontMul $MM(m^{4.d''}.r^{4v_1},m^3.r^{-3v_1})$
d _i =11 _	$\begin{array}{c} \text{If } v_1 = v_2 \\ \hline \mathbf{Message} \\ \hline m \\ -m \end{array}$	$- \\ Square \\ MM(m^{d''}.r^{v_1}, m^{d''}.r^{v_1}) \\ MM((-m)^{d''}.r^{v_2}, (-m)^{d''}.r^{v_2}) \\ \end{bmatrix}$	Yes Square $MM(m^{2.d''}.r^{v_1},m^{2.d''}.r^{v_1})$ $MM(m^{2.d''}.r^{v_2},m^{2.d''}.r^{v_2})$	Yes $ \frac{M_{(2d_i+d_{i-1}=3)} \text{ MontMul}}{MM(m^{4.d''}.r^{4v_1},m^3.r^{-3v_1})} \\ MM(m^{4.d''}.r^{4v_2},(-m)^3.r^{-3v_2}) $

 Through collision analysis {00,10} can be identified from {01,11}, half of d can be therefore recovered.

Collision Attack on BRIP (8/8)

With RSA CRT (Chinese Remainder Theorem), n=p.q :

Given two input messages ±*m* mod *n* Relation is **maintained** as:

 $\begin{array}{c} m_2 = -m_1 \mod n \\ m_2 = -m_1 \mod n \end{array} \rightarrow \begin{array}{c} m_2 \mod p = -m_1 \mod p \\ m_2 \mod q = -m_1 \mod q \end{array}$

Colliding power trace both exponentiations would leak secret exponents **if** message is **randomized once at the beginning.**

Collision Analysis applies identically !

Implementing BRIP RSA (1/6)

- BRIP RSA needs an inverse modulo computation : Costly operation in term of execution time, Major drawback of the countermeasure must be avoided.
- Trick from Ciet & Feix '04, use Montgomery Modular Arithmetic :

 $MontMult(a, b, n) = a \cdot b \cdot R^{-1} \mod n$ $MontMult(1, 1, n) = R^{-1} \mod n$

to compute $v = R^s$ and $v^{-1} = R^{-s}$ with s a random value.

 Pertinent : Montgomery Modular Arithmetic is well spread in Public Key hardware accelerators.

Implementing BRIP RSA (2/6)

Consider **exponentiation using Montgomery arithmetic**:

 $MontExp(x,e,n) = x^e \cdot R \mod n$

Idea is to set:

e = s (BRIP RSA random value)
x = R⁻¹, obtained from MontMult(1,1,n)

and then compute:

MontExp(R^{-1} , s, n) = R^{-s} . R

Inverse modulo n is efficiently replaced by an exponentiation with small exponent !

Implementing BRIP RSA (3/6)

• **Seducing** computation method **BUT** introduces an **SPA leakage** !

Step 3. Choose a random value v and compute $v^{-1} \mod n$

Implementing BRIP RSA (4/6)

What happen ? In exponentiation loop and each time s_i = 1, following computation is executed :

 $MontMult(Acc, \mathbb{R}^{-1}, \mathbb{R}, n) = MontMult(Acc, 1, n)$

 Due to Hamming weight of 2nd operand (`1'), Multiply becomes characteristic. Each Multiply operations can be identified by its low consumption.
 Random value is therefore revealed !

Implementing BRIP RSA (5/6)

Once the random value is recovered trough SPA, internal values in BRIP RSA can be guessed.

Therefore any power analysis attacks based on **statistical analysis** (DPA, CPA) can be envisaged.

 Experimentally less than one thousand of curves are needed to recover whole exponent value (by using CPA).

Implementing BRIP RSA (6/6)

• **Simple tweak** to counteract SPA is to compute :

<i>R</i> ⁻s mod <i>n</i>	$= - (-(R^{-1}))^{s} \mod n$	
	$= n - ModExp(n-R^{-1},s,n)$	if <i>s</i> even
	= ModExp(n -R ⁻¹ , s , n)	if <i>s</i> odd

This concretely replace **1** replaced by *n*-**1** as operand of MontMult(*x*, *y*, *n*) operator.

n-1 has no more a low hamming weight: SPA avoided.

Sufficient ?

Most advanced attacks should be considered too (**Template Attacks**, etc.) which could be used to recover **part of the random value**.

Adding countermeasures in *R^s* and *R^{-s}* computations will reduce at same time performances and therefore interest for BRIP RSA.

Conclusion

Analysis presented :

How collision detection can endanger BRIP RSA : Avoid random values < 64 bits, Using padding schemes prevent against such attack, Analysis can be extended to others exponentiation methods.

Montgomery inversion trick :

Must be implemented carefully.

Questions & Answers

On The BRIP Algorithms Security on RSA - WISTP'08